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Exact transport equations have been derived previously [I, 2] in a new and computationally 
simpler form for a partially ionized multicomponent gas mixture; the corresponding expressions 
are given for all the transport coefficients in higher approximations of the expansion of the 
nonequilibrium component distribution functions in Sonin polynomials, and the behavior of 
these coefficients is subjected to a detailed numerical analysis in the example of partially 
ionized air. In the present article we discuss the derivation of transport equations for the 
special but important practical case of the flow of partially dissociated and partially ion- 
ized multicomponent gas mixtures under the condition of local chemical equilibrium at each 
point of the flow (this situation is common in practice, e.g., in continuum flow around bodies 
at large Mach and Reynolds numbers, in problems of chemical technology, etc.). A complete set 
of effective transport coefficients is introduced for the first time in application to this 
case, and they are analyzed numerically with the inclusion of higher approximations; practical 
recommendations are given on the basis of this analysis for the inclusion of higher approxi- 
mations in the effective transport coefficients in connection with the solution of heat- and 
mass-transfer problems in a low-temperature plasma. 

Transport phenomena in chemical-equilibrium gas mixtures are covered in an exhaustive 
literature. The first description of heat transfer with allowance for the additional diffu- 
sion transport of "chemical" energy was proposed by Nernst [3]. This approach was later 
elaborated (in [4-6], etc.) for binary gas mixtures in which one dissociation reaction takes 
place. The physical substantiation of this process reduces to the fact that the products of 
a reaction taking place in an elevated-temperature region diffuse into a lower-temperature 
region, where they enter into the reverse chemical reaction. An effective thermal conduc- 
tivity has been introduced for multicomponent gas mixtures at rest (Vp = 0) with an arbitrary 
number of ongoing dissociation reactions [7, 8] and for partially ionized chemical-equilibrium 
mixtures [9, 10]. 

Several authors [3-10] have discussed the derivation of only the effective thermal con- 
ductivity in a rest medium, i.e., only molecular heat transfer, but not molecular mass trans- 
fer in the form of diffusion of the elements, which necessarily occurs in the presence of a 
temperature gradient in a multicomponent mixture with components having different diffusion 
properties, even when thermal diffusion is absent or when a pressure gradient exists [see 
Eq. (2.5) below]. Diffusion of the elements induces an additional heat-flux term, and the 
presence of a pressure gradient induces an additional term in the energy equation. The dif- 
fusion of the elements in chemical-equilibrium flows results in another whole series of cross- 
over effective transport coefficients, so that the diffusion flux of a particular element 
depends on the gradients of all the elements. This fact was first brought to attention in 
[11, 12]. We note that the presence of reactions in a gas mixture tends to perturb the com- 
ponent distribution functioms, in which case the transport coefficients, generally speaking, 
must be computed from the appropriate kinetic equations with collision integrals that in- 
clude "chemical" collisions. Chemical reactions upset the equilibrium energy distribution. 
As a rule, however, the characteristic reaction time is large in comparison with the mean 
particle transit time, i.e., the reaction rate is small in comparison with, say~ the relaxa- 
tion rate of the Maxwell distribution. Under these conditions, the kinetic behavior of the 
reacting mixture is quantitatively similar to the behavior of a nonreacting gas in its prin- 
cipal features. This is because the elastic collision processes restoring the Maxwell dis- 
tribution are far more intense that the collisions responsible for chemical reactions. Conse- 
quently, published estimates of the influence of reactions on the transport coefficients [13] 
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show that their influence is slight, amounting to a few percent in the presence of dissocia- 
tion reactions and yielding a somewhat more appreciable contribution [14, 15] in the presence 
of ionization reactions. As a rule, the increment to the thermal conductivity as a result of 
equilibrium chemical reactions and "diffusion of the heats of reaction" is considerably greater 
(by as much as two orders of magnitude) than its variation due to the influence of chemical 
reactions at the kinetic level. The duration of equilibrium chemical reactions is, by defini- 
tion, much smaller than the characteristic hydrodynamic time and, on the other hand, much 
greater than the relaxation time of the Maxwell distribution. The present study therefore 
rests on the equations derived for mass transfer of the components and heat transfer without 
regard for the influence of "chemical" collisions on the transport coefficients in the form 
obtained in [!, 2]. 

I. STEFAN-MAXWELL RELATIONS AND HEAT FLUX FOR A QUASINEUTRAL GAS MIXTURE 

We consider the system of equations for the diffusion fluxes of the components and~the 
equation for the transfer of total heat flux due to gradients of the temperature, concentra- 
tions, and pressure and due to the electric fields present in the plasma under the conditions 
of local chemical equilibrium, proceeding from general representations of the total transport 
equations obtained by the methods of kinetic theory for partially ionized multicomponent gas 
mixtures. 

For multicomponent mixtures of partially ionized and dissociated gases in the absence 
of external and induced magnetic fields, the component mass,transfer equations in the form 
of Stefan--Maxwell relations are written [I, 2] 

N 
t ~ �9 ~ , Jh 

d i = - - A ~ J i + x ~  AkiJk, J~ - -  i = t ,  . .  N ,  ( 1 . 1 )  

where d i denotes the diffusion force vectors 

d~ c~ =Vx~+kpiVlnp+k~i(~)vlnT---- ~ p e i E _  ~e s ; (1 .2 )  

ci, xi, Ji, kTi, kpi, ei, Pi, mi are the mass concentration, mole concentration, diffusion 
flux, thermal-diffusion ratio, pressure-diffusion ratio, charge, density, and mass of the i-th 
component, respectively; p, T, and p are the pressure, temperature, and density of the mix- 
ture; Aij are the resistance coefficients: 

N 

A~ 1 = n ~ j  (t) ]~j (~), A~ = Y, zhA~k; 
h = l  

~iJ(!) are the binary diffusion coefficients; fij(~) are higher-harmonic approximations; and 
E is the electric field vector. 

In the expression (1.2) for the vector of diffusion forces, the external force vectors 
Fi(Fi = eiE) are determined from the zero-magnetic-field conditions. Under the condition of 
quasineutrality (small deviations from electrical neutrality in an ionized gas produce very 
strong electric fields, which force the plasma rapidly back into the neutral state in a time 

= mE/4~nE ee) we have 
N 

x~.-- = 0 .  (1 .3)  
k~l eE 

Condition (1.3) in conjunction with the condition of charge preservation in the reactions 
(1.6) e i = viEeE (ViE denotes the stoichiometric coefficients of the ionization reaction, and 
the index E refers to the electron) can be used to eliminate the field E from the Stefan-- 
Maxwell relations (1.1) and (1.2). For this purpose the expressions (1.2) for the diffusion 
force vector are substituted in Eqs. (1.1), and each equation (i = I,...,N) is multiplied by 
ei/e E. Then summation is carried out from I to N, and condition (1.3) is invoked after trans- 
formation to differential form. This procedure makes it possible to derive an explicit ex- 
pression for the field vector E, which is then substituted in Eq. (1.2) and is thus eliminated 
from the Stefan--Maxwell relations. As a result [16], 

t N 
d i = - -  A~J~ + xi ~ ~ih~(~ ( 1 . 4 )  

h : l  
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where 

d i = VXi + k(p~ In p + ~ ) V  In T. (1 .5 )  

Here 

N /V ! N [ N \ - - 1 / 2  

.o~(~ = k~ -- ~g~ ~ ~,k~.; ~,,~!~ = &j + ~ Y. x~ (~j --  ~)  & :  k(~ ~ = k , i -  . &  ~ ~.k~,; ~ =e~ { ~  x :  D 
s=l h=l s=l \h=l Y 

The following relations are satisfied: 

N N k(p~ ) N ' 
E ~ ( ~  E = o ,  2]~'~(~ wivij = Aj, t~Ti 
~=I i=l i=i 

N N N 

er i = O, ~.a elk(p ~ = O, ~ xieioi jo(o) = ejAj. 
i=l i=1 i=l 

Equations (1.4) and (1.5) are of the same form as the corresponding equations for mixtures 
of neutral components, but the resulting expressions for the coefficients contain additional 
terms depending on the particle charges e i. In the case of mixtures of neutral particles, 
for which all e i ~ 0, the additional terms in the expressions for the coefficients in rela- 
tions (1.4) and (1.5) vanish, and the Stefan--Maxwell relations (1.4) and (1.5) go over to the 
ordinary relations for neutral mixtures in this case, i.e., they coincide with the system 
(1.1), (1.2) with E -- 0. 

For the subsequent analysis we transform from the mole concentrations x i in relations 
(1.4) and (1.5) to the mass concentrations ci, making use of the relations [c i = (mi/m)x i] 

N 

vc ,  

Moreover ,  to  f a c i l i t a t e  the  s o l u t i o n  o f  the  hyd rodynamic  p rob lems  we s e t  a p a r t  the  component 
m a s s - t r a n s f e r  e q u a t i o n s  f o r  the  e l e m e n t s  Bj (j  = 1 , . . . , L ) ,  w r i t i n g  them s e p a r a t e l y  f rom the  
t r a n s f e r  e q u a t i o n s  f o r  the  r e a c t i o n  p r o d u c t s  Ai ( i  = L + 1 , . . . , N ) ;  t h e y  a r e  i n t e r r e l a t e d  by 
the system of linearly independent reactions 

L 

A r  vijBj, i = L +  l, . . , N ,  ( I . 6 )  

where L is the number of elements, vij are the stoichiometric coefficients of the reactions, 
and N is the number of components in the mixture. 

As in [I], we define the element concentrations c~ and the element diffusion fluxes Jj 
as follows in accordance with the representation of the reactions in the form (1.6): 

N N 
, , rfg~ 

h=L+l R=L+I 

As a result of simple transformations of the relations (1.4) and (1.5), we obtain for the 
elements j = i .... ,N 

L N 
, m j  , , ,  mj  

l=1 h=L+I 

where 
* * * * 

d~ = VC~ + KpN In p + K~V In T; 

f o r  the  r e a c t i o n  p r o d u c t s  i = g + 1 , . . . , N  
L N 

~ ~ A(0)~*' d~ J i + ~ i ~ z o ~  + c i  Z ~)T' 

l = l  /~=L+I 

where 

(1 .9 )  

iV (~ di V c i + K ( p ~  -~T~ V In T. 
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Here 
H 

h = L + l  ' r = l  . _ . . . . . . . . . . . . . . . . . . . . . . .  = 
L . 

I = 1  . 

N N 

~--- i s ~ l  

L N 
A(,) ~(o) A(o) * ~ = ~  Y ~ ~ Y , c ~ ,  

l ~ l  h--i 

IV 

=.~,~ "4- ~ vh~(rnj/mh) r'(") ~ T h  
h ~ L + l  

N N 

= m_ 2 . _ Z 
S=I s~l 

N 

K * .  - -  K (~ + ~ ]  - ~ - ( o )  P3 - -  P 3  Vh) (m~/m~) ~ p ~  , 
h = L + l  

N N 
K(O ) rn~ m s 

S = I  $=1 

x~ = x i -4- 
N 

E ~ j X l ,  
l=L+1 

By virtue of the conditions 

L N 

= O.nd cE = xh ~ = 0 

the number of independent relations (1.8), (1.9) will be N -- I for a mixture of electrically 
neutral components and N -- 2 for a quasineutral mixture containing charged particles. In 
conclusion, we represent the system of equations (1.8), (1.9) in a more complete form, intro- 

Denoting S i = (p(~)/ ducing the dimensionless Schmidt numbers used in hydrodynamic problems. 
m)Ai, we obtain for the elements j = I,...,L 

d~ = -  V~ ~ + ~-N ~J~J~' + ~ ~;Ji 
\I=I R~L+I . 

+ Z 
I t=L+1 

for the reaction products i = L + I,...,N 

miS ~ [ ~.~ , ,  

(1 .10 )  

where 
* A(o) * A(1) 

A t A ~ '  h i 

We also transform the total heat-flux equation [I] 

N 

[X(~) is the "true" thermal conductivity, k is the Boltzmann constant, ~Tk(~) is the thermal 
diffusion coefficient, and hk is the specific enthalpy of the k-th component], introducing the 
element diffusion fluxes J~ o in place of the component diffusion fluxes Jj and making use of 
the relations (1.7) between them. Relations for the enthalpies of the reaction products can 
be deduced from the energy conservation law: 

L 

m-Lh~ L . . . ,  h~=Zv~z --q~(T), i =  + t ,  N, 
/ = 1  ~ i  

which we incorporate into the reactions (1.6) Co obtain 

L N 
;rq= z ( ~ ) v r + ~  r .  (1.11) hj ~ -- ~ q ~ ,  

j=l k=L + 1  

64 



where 
L 

j = l  

mi, aTi---- xi a T i - - ~ .  

Here qi(T) denotes the specific heats of the reactions (I .6), and hi(T) are the specific 
enthalpies. Transforming to the total enthalpy gradient (H = h + v2/2) in (1.11): 

v H  = V c~h~ + = c p v T  + h jvc j  - -  q~vc~ + V -5" 
j~l h=L+l ' 

we have 

[ ) i (  o )] * ~ hfJ~ + qhvch + --~ q[,lk Sq = - -  -~ V H -- V hNcj + -~ 
j : l  ~ = L + I  . - 

where o = (p(~)Cp)/l(~) is the Prandtl number and Cp is the specific heat of the mixture at 
constant pressure. The transport equations (1.8), (1.9), and (1.12) are valid for an arbi- 
trary course of the chemical reactions. 

2. MASS-TRANSFER AND HEAT-FLUX EQUATIONS FOR CHEMICAL-EQUILIBRIUM FLOWS 

We consider the component mass-transfer equations (1.8), (1.9) and the heat-flux equation 
(1.12) under the condition of chemical equilibrium. In this case the mass source terms Wi in 
the complete Navier--Stokes equation [I] degenerate into finite relations, which are called 
the chemical equilibrium conditions and are replaced by the mass conservation equations for 
the components, i.e., the reaction products. Of all the differential equations expressing 
the conservation of mass of the components, only the equations for the conservation of mass 
of the chemlcal elements c~ (j = I,...,L) are left, and they are closed by (1.8). For a 
given element composition ~, the component concentrations x i (i = I,...,N) are determined 
from the system of algebraic ~ equations [17] 

L 

H xV~J 
j=l j ----- Kpi (T) 

~ = L +  I, . . . , N ;  
x i pvi 

N N 
mj mj . 

x~-~ + '~ xi . . . ,  V~j m = c  j ,  1 = t ,  L ,  
i - . ~ L + l  k=l 

L 

(2.1) 

. ~ x ~  = t, 

where Kpi(T) is the equilibrium constant and ~=~w~j--1. The first group of equations (2.1) 
j=1 

represents the Gulberg and Waage (mass action) chemical equilibrium condition for the chemical 
reactions and Saha's ionization equation; the second group represents the material balance 
equations. For ionized gas mixtures the system (2.1) is augmented with the quasineutrality 
condition c~ = O. 

The system (2.1) establishes the implicit dependence of the reaction-product concentra- 
tions x i (i = L + I,...,N) in terms of the concentrations of the chemical elements c~ (j = 

t " " "J I,...,L), p, and T, making it possible o ellmlnate the reaction-product concentratlon gra- 
dients Vc i (i = L + I,...,N) and the reaction-product fluxes Ji (i = L + I,...,N) in Eqs. 
(1.8) and (1.12) by expressing them in terms of the respective element quantities Vc~ and Jj 
and also in terms of Vp and VT. 

Accordingly, we transform to the mass concentrations c i in the system (2.1), apply the 
operation V to the logarithm of each chemical-equilibrium equation, express Vcj (j = I ,7 - L �9 * ~ . + 

in terms of Vcj (j = I .... ,L) and Vc i (i = L 1 ..... N) by means of (1.7), and invoke the ., ) 
van't Hoff isochore [3]: 

dln Kpi(T) miq~ i = L +  i ,  N .  (2 .2)  
dT kT 2'  " ' "  

Then to determine Vc~ = V(ei/mi) (i = L + I,...,N) we have the system of equations 
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N L 

ai/lVC ~ . mlq ~ vi m _ _ ~ v l n T + ~ . v l n p + ~  * ,,  vijVCj , 
h=L+I ~=i 

(2.3) 

where 

i 6i h * 'vii viJvk.-------JJ - -  vivj + "77; vii = aih  = ahi  x j  x j  
j=l 

To determine the diffusion fluxes of the reaction products Ji (i = L + I,...,N) we use 
Eqs. (1.1), (2.1), and (2.2). Eliminating the component--element diffusion fluxes from them 
by means of (1.7) and expressing Jj in terms of Jj, we arrive at the system of equations [16] 

N miqT L ' "~ d..~*' 
' ~  bihJh = -yT-V In T + z._J-~,-s , (2 .4)  

k:L+I  j=l 

where 
L L' L L - . 

bik = bhi---- Z vOvhj #~1/~1 
j=l "= = j=l 

L 
d~j = A~j 4- v o A y x j - -  ~ v~zA~j, ] = i,  . . . ,  L; 

/=1 
k , i  L + t ,  . . . ,  N. 

It must be noted that the system (2.4) is obtained in the same form even without the assump- 
tion of quasineutrality of the mixture, but the electric field E does not occur explicitly 
in (2.4), by virtue of the equations for the conservation of mass and charge in the reactions 
[16] .  Moreover, the retention of the term characterizing the pressure diffusion in (1.1) 
does not introduce a term with VInp on the right-hand side of (2.4). 

Only the element mass-transfer equations are needed in order to close the system of Navier-- 
N 

Stokes equations for chemical-equilibrium flows. We therefore eliminate the sums ~ ~2~1~ 
h=L+l 

from (1.10), using the solution of the system (2.4) to do so. As a result, we have 

L. 
S..~. . mjSj ,~  ~(e)**, (2.5) d~=--  $ ~ + ~ ~ z o z  , 

l=1 

where 

(. dj = VC7 + K~j --  ~- ~t~ V In T + Kvj v In p. 

Here 

k = L + I  

(2.3) 

cx ) = ~ j t + c z j z  ; 
0 ' dL+lj 

5** t 

8Je) = kT de~ II II 

.~ 

8" j,L+I bL+I,L+I ... 

LN bN,L+I �9 �9 �9 

0 q~+l . . .  

~,L+l b L + I , L + I  ... 

j,N bN,L+I �9 �9 �9 

dN'l ] 
bL+I,N ; 

bN, N 

bL+I,N �9 

b N ,  N 

(2 .6)  

(2.7) 

N 

E ~=L+I 
Equation (1.12) is transformed for chemical-equilibrium flows. The sums q~vck and 

N 

"~ q~Jh i n v o l v e d  in  (1 .12)  can be w r i t t e n  as f o l l o w s  w i t h  the  a i d  o f  t h e  s o l u t i o n  of  Eqs. 

and (2 .4)  : 
N L 

"~ qhvc~, = --CprVT + a(v,  Q)Y-~ + Z a ( v * ,  O) VC~; (2 .8)  
h=L+I j=l 
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where 

N L 
T j  # '  qh ~ = ~,~vT + ~ bs (d, QT)j~,  

k=L+l S=I 

I O QL+~ ... QN ] 
1 QL+I aL+LL+I aL+l N 

Cpr 

I O QLT+I . . .  ON T ] 

~r = kT 2 det [] bik ll " 
t 6 ~  bN,L+I . . .  bN,N 

�9 ". QN 

I aL+l, N ~s (~*, Q) = - 

+I,~ aL+I ,L+I  � 9  
m s d e t [ l a i h l l  " " 

] ~N,S aN,L+I �9 . . aN, N 

(2.9) 

( 2 . 1 o )  

(2.11) 

(2,12) 

b s (d, QT) 

I ~ VL+I 6~L+I;L+I �9 �9 �9 aL+f, N 

a (% Q) = - -  kr det If ai~ 11 " 
~ N  aN, L+I aN, N 

o QL~ "'" Q~- I1 1 d L + l j  bL+I lL+I  " ' "  bL+I,N 
m s d e t l l b i h l ]  " �9 

dN,S b N , L + l  . . .  bN,N 

QL+x " .  QN 

t 

Qi = miqi, Q~ = miq~. 

(2.13) 

Then the expression obtained for (1.12) with the use of (2.8) and (2.9) acquires the compact 
form 

where 

L 

$q = -- %effV T -- E b~J~, (2.14) 
S=I 

~0,, = ~, + ~ ;  b; = bs (ds, Q~) - hT; 

kef f is an effective thermal conductivity equal to the sum of the molecular thermal conductiv- 
ity, which characterizes heat transfer through translational degrees of freedom, plus the 
heat-transfer coefficient ~r associated with diffusion of the reacting components. Equation 
(1.12), written in terms of the total enthalpy, is transformed to 

Jq ~ V ~ - -  2 VP geff * * 
+ a(v ,  Q I T +  ~ * , S=I a i v Q  +-~"bJl ' I5  ' (2.75) 

where 

~%at ~ (%, + %) * 
~af ~a~ ~--T7-i7--~; aj = aj (~*, Q) - h s ( 2 . 1 6 )  

(~eff is the effective Prandtl number). 

Consequently, under the chemical-equilibrium condition the transport equation for the 
total heat flux (2.14) contains not only the additional so-called "chemical" contribution Lo 
the thermal conductivity keff, but also an additional term involving the diffusion fluxes of 

L 

the elements ~ * * bjJs, and (2.15) contains an additional contribution from the chemical reac- 

tions, which is manifested in the advent of terms involving Vp, Vc~, and J~, which have not 
been discussed previously in the literature. 

The transport coefficients in the mass-transfer equations (2.5) and in the equation for 
the total heat flux (2.15) associated with chemical reactions depend only on the local compo- 
sition of the plasma, p, T, the element concentrations c~ (j = I,...,L), which must be 
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determined from the solution of the specific problem, and also on the particle collision inte- 
grals Q l, s(T). 

l] 

3. NUMERICAL COMPUTATION OF THE EFFECTIVE TRANSPORT COEFFICIENTS OF IONIZED AIR IN 

CHEMICAL-EQUILIBRIUM FLOWS 

' We have computed all the effective transport coefficients involved in (2.5) and (2.15) 
on the basis of the transport coefficients obtained in higher approximations for a partially 
ionized mixture of oxygen and nitrogen [I], and we have investigated the influence of the 
transport properties of the mixture and the thermal effects of equilibrium chemical reactions 
on the computed coefficients. Here we give the most interesting results. 

-(e)m (oxygen) with values of the pres- Figure I shows the values of ~j j/m [Eq. (2.5)] for 0 ). The quantity 6re)mj/m 
sure p = 1.013-i0 s Pa (curve I) and p = 1.013"10 7 Pa (curve 2 attains 

a value of 0.2-0.3 in the region of dissociation of air. This means that even when we neglect 
thermal diffusion (kTi = 0) and pressure diffusion (kpi = 0), the diffusion fluxes of the ele- 
ments Jj (j = I,...,L) have nonzero values in the presence of a temperature gradient, owing to 

(e) 0 for the difference in the diffusion properties of the components (6j E identical diffusion 
properties of the components). Consequently, an appreciable separation of the elements oc- 
curs in the flow in the presence of dissociation chemical reactions (this result has been ob- 
tained previously in the numerical analysis of specific flows of dissociating gases [18]). 

(e) m. In the ionization region, ~j j/m increases even more, and the element separation effect 
becomes more pronounced. For identical diffusion properties of the components in the mixture 

(e) is identically zero, and separation of the Aik = A (i, k = I ..... N), the coefficient 6j 

elements does not occur for kTi = kpi = 0 (i = 1,...,N). 

The coefficients %r (2.11) and Cpr (2.10) occurring in the equation for the total heat 
flux (2.14) [or (2.15)] in equilibrium chemical reactions enter into the equation in the form 
of the combination Oef f (2.16). In the event of strong reactions (dissociation of N2, 02, NO 
or ionization of N, O), the values of %r and Cpr can be several times the corresponding val- 
ues of h and Cp for chemically frozen flows. Figure 2 shows the values of hr, W/m'K, at p = 
1.03-105 and 1.013-107 Pa (curves I and 2). However, the variation of the effective Prandtl 
number, which is shown in Fig. 3, exerts a weaker influence than the separate variations of 
h r and Cpr; thus, the variation of Oef f is ~I0% in the region of dissociation reactions and 
~40% in the region of ionization reactions (twofold ionization has been disregarded in the 
given computations, and the Prandtl number Oef f turned out to be small at high temperatures 
and low pressures). Curves I-3 in Fig. 3 correspond to p = 1.013"103 , 1.013"105 , and 1.013" 
107 Pa. 

For the analysis of the influence of terms containing the gradients VH, Vp, Vc~, and J~ 
on the heat flux (2.15), it is instructive to trace the variation of the coefficients of these 
terms in the equation. Figures 4-6 show the values of the coefficients A = a(~, Q)(p/ph) 
(2.13), a~/h (2.16), and b~/h (2.14) respectively, after transformation to dimensionless 

�9 J ' form in accordance wlth Eq. (2.15). The results of the numerical computations illustrate 
the behavior of A in dissociation and ionization, but the actual value of this coefficient 
varies from 0 to 0.20 over the entire region of T and p. The ranges of variation of a?/h and 
b~/h are approximately identical: from 0 to 2.5. J 
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The influence of thermal and pressure diffusion on the fluxes can be estimated according 
to the values of K~j and Kpj. We shall not give the detailed results of the numerical compu- 
tations of these coefficients; we merely polnt out that K~j does not exceed ~0.01 in dlssocla- 
tion or ~0.025 in ionization, while K~j does not exceed ~0.08 in dissociation or 0.06 in ion- 
ization [19]. Curves I and 2 in Fig. 4 correspond to p = 1.013.105 and 1.013.107 Pa, and the 
pressure p = 1.013"105 in Figs. 5 and 6. 

4. INFLUENCE OF HIGHER APPROXIMATIONS ON THE EFFECTIVE TRANSPORT COEFFICIENTS 

The convergence of the higher approximations in the computation of the effective coef- 
ficients in the transport equations has not been systematically investigated before. The 
expression for Ir [8, 9] used extensively in the computation of the effective thermal con- 
ductivity of an ionized gas was obtained without inclusion of the higher approximations. 
Calculations of the coefficient ir in the higher approximations have not been carried out 
to date. The same is true of 6(e)mj/m, which has been neglected previously in the calcula- 

tion of chemical-equilibrium flows, so that the influence of higher approximations on these 
coefficients is unknown. 

It has been shown [2] that different numbers (orders) ~ of approximations must be used, 
generally speaking, for different coefficients in order to compute the transport coefficients 
with a prescribed accuracy. The effective transport coefficients are functions of some or 
all of the transport coefficients, and so the analysis of their convergence with respect to 
must be carried out completely with allowance for the different orders of convergence of the 
molecular coefficients. Numerical computations of the effective transport coefficients with 
allowance for different approximations in the original transport coefficients have indicated 
good convergence of all the effective coefficients for dissociated and ionized air. 

o(e) The influence of inclusion of the higher harmonics in the calculation of 0j (2.7) is 

~(e)mj/m, i e., the shown in Fig. I, in which the solid curves represent the exact values of 6j 

fourth approximation E = 4 is used in this case for the calculation of the quantities kTi(E) 

and ~j(~) used in the computation of 6 (e) " ~e)mj/m j ; the dashed curves represent the values of 6 
J 

69 



computed without regard for thermal diffusion, i.e., for kTi = 0, and without regard for the 
correction factors to the resistance coefficients Aij [2] (for ~j = 0). It is seen that 
neglect of the thermal-diffusion ratios kTi and the correction factors ~ij in the calculation 

~(e) 
of dj induces appreciable error (~2-5%) only in the region of partial ionization. 

Figure 2 shows the results of the computation of Ir (2.11) with the use of different 
orders of approximation $ in the calculation of the quantities kT~ , ~j required for the com- 
putation of I r. It is found that the contribution of the thermal-diffusion ratios kTi to I r 
does not exceed ~5% over the entire investigated range, and the correction factors ~ij intro- 
duce a 2% contribution to I r. Thus, in the computation of ~(e) and h r it is not required 

J 
to calculate the values of kTi(~) and ~j(~) in the higher approximations, and kTi and ~ij 
can be neglected altogether within ~5% error limits. 

The Prandtl number Oef f (2.16) is shown in Fig. 3. Since higher approximations are in- 
consequential in the computation of Ir, the number of approximations required for the compu- 
tation of Oef f is determined by the accuracy of computation of the ratio ~(~)/I(~). It is 
sufficient to compute the coefficient I(~) within 2% error limits in the third, approximation 
~, and to compute u(~) in the second approximation [2]. The solid curves in Fig. 3 represent 
the exact values of Oeff, i.e., the computations of all the original transport coefficients 
are carried out in the highest approximations ~, and the dashed curves represent the values 
of Oef f obtained with the computation of I(~) in the second approximation (~ = 2) and of the 
coefficient ~(~) in the first approximation. The x's in Fig. 3 indicate the values of Oef f 
computed without the correction coefficients to Aij and without the thermal-diffusion ratios 
(~ij = 0, kTi = 0). It is therefore evident that the role of kTi and ~j in the computation of 
Oeff is small, and their influence on Oef f is ~5%. However, the viscosity and thermal con- 
ductivity coefficients must be computed in the second and third approximations ~, respectively. 
The incorrect choice of the approximation order ~ in the computation of Oeff can produce ~60% 
error in the region of strong ionization. 

The influence of the accuracy of computation of kTi(~) and ~j(~) on ~31 in the element 
transport equation (2.5) and on aj (2.16) and b~ (2.14)t in the total heat-flux equation (2.15) 

to be the same as: in the computation of ~e). The influence of the higher approxi- isf0und 
mations on the computation of K~j in (2.5) is determined entirely by the accuracy of computa- 
tion of kTi(~) , but the coefficients K~j themselves are rather small, and it is not essential 
to include higher approximations in the computation of kTi(~). The coefflclents Kpj in (2.5) 
and a(~, Q) (2.13) in (2.15) are of a purely thermodynamic nature and do not depenH-on the 
higher approximations. Nor does th~ coefficient Sj/~ = Aj/m depend on the higher approxima- 

tions; by virtue of the conditions [I] ~/~)~(i)]~(~)=0 the coefficient Aj does not de- 

pend on the correction factors ~7(~). 

Thus, the thermal-diffusion ratios kTi(~) and the correction factors ~7(~) must be com- 
puted in the second approximation ~ (the first nonzero approximation) in the computation of 
the element diffusion fluxes J~ and the total heat flux Jq for partially ionized air. In the 
region of partial ionization k~i(~) can be neglected within ~5% error limits in the computa- 
tion of all the investigated coefficients, and ~7(~) can be neglected in the computation of 
all the effective coefficients in the total heat-flux equation. For the computation of the 
coefficients in the total heat-flux equation the transport coefficients ~(~) (viscosity) and 
X(~) (thermal conductivity) must be computed in the second and third approximations, respec- 
tively. The orders of the determinants in the expressions for ~(2) and %(3) are identical 
and equal to 2N in this case. 

The situation described here is illustrated in Fig. 7, where the regions I-V in the T--p 
plane are separated by curves I-4, which indicate the rightmost boundary to which the trans- 
port coefficients ~(~), ~(~),k~(~), ~(~) must be calculated in specified approximations ~ in 
order to ensure the calculation of the effective coefficients in the transport equations with- 
in at most ~5% error limits [the arguments (in parentheses) of the coefficients indicate the 
order of approximation ~]. It is evident from the monogram that all the transport coeffi- 
cients without exception must be computed in the higher approximations only beginning with 
region V in the case of partially ionized air. 
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